Redistribution of intestinal microcirculatory oxygenation during acute hemodilution in pigs.

نویسندگان

  • Lothar A Schwarte
  • Artur Fournell
  • Jasper van Bommel
  • Can Ince
چکیده

Acute normovolemic hemodilution (ANH) compromizes intestinal microcirculatory oxygenation; however, the underlying mechanisms are incompletely understood. We hypothesized that contributors herein include redistribution of oxygen away from the intestines and shunting of oxygen within the intestines. The latter may be due to the impaired ability of erythrocytes to off-load oxygen within the microcirculation, thus yielding low tissue/plasma Po(2) but elevated microcirculatory hemoglobin oxygen (HbO(2)) saturations. Alternatively, oxygen shunting may also be due to reduced erythrocyte deformability, hindering the ability of erythrocytes to enter capillaries. Anesthetized pigs underwent ANH (20, 40, 60, and 90 ml/kg hydroxyethyl starch; ANH group: n = 10; controls: n = 5). We measured systemic and mesenteric perfusion. Microvascular intestinal oxygenation was measured independently by remission spectrophotometry [microcirculatory HbO(2) saturation (muHbO(2))] and palladium-porphyrin phosphorescence quenching [microcirculatory oxygen pressure in plasma/tissue (muPo(2))]. Microcirculatory oxygen shunting was assessed as the disparity between mucosal and mesenteric venous HbO(2) saturation (HbO(2)-gap). Erythrocyte deformability was measured as shear stress-induced cell elongation (LORCA difractometer). ANH reduced hemoglobin concentration from 8.1 to 2.2 g/dl. Relative mesenteric perfusion decreased (decreased mesenteric/systemic perfusion fraction). A paralleled reduction occurred in mucosal muHbO(2) (68 +/- 2 to 41 +/- 3%) and muPo(2) (28 +/- 1 to 17 +/- 1 Torr). Thus the proposed constellation indicative for oxygen off-load deficits (sustained muHbO(2) at decreased muPo(2)) did not develop. A twofold increase in the HbO(2)-gap indicated increasing intestinal microcirculatory oxygen shunting. Significant impairment in erythrocyte deformability developed during ANH. We conclude that reduced intestinal oxygenation during ANH is, in addition to redistribution of oxygen delivery away from the intestines, associated with oxygen shunting within the intestines. This shunting appears to be not primarily caused by oxygen off-load deficit but rather by oxygen/erythrocytes bypassing capillaries, wherein a potential contributor is impaired erythrocyte deformability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute normovolemic hemodilution improves oxygenation in ischemic flap tissue.

BACKGROUND The flaps used in reconstructive surgery are prone to ischemia and hypoxia, which imply a considerable risk of wound-healing complications. During normovolemic hemodilution, the oxygenation may further deteriorate because of the lack of erythrocytes or improve because of increased microcirculatory blood flow. The aim of this study was to investigate the net effect of normovolemic hem...

متن کامل

The choice of the intravenous fluid influences the tolerance of acute normovolemic anemia in anesthetized domestic pigs

INTRODUCTION The correction of hypovolemia with acellular fluids results in acute normovolemic anemia. Whether the choice of the infusion fluid has an impact on the maintenance of oxygen (O₂) supply during acute normovolemic anemia has not been investigated so far. METHODS Thirty-six anesthetized and mechanically ventilated pigs were hemodiluted to their physiological limit of anemia toleranc...

متن کامل

Myocardial Oxygenation during Acute Normovolemic Hemodilution: Impact of Hypocapnic Alkalosis.

BACKGROUND Increases in myocardial blood flow preserve myocardial oxygenation during moderate acute normovolemic hemodilution. Hypocapnic alkalosis (HA) is known to cause coronary vasoconstriction and increase hemoglobin-oxygen affinity. We evaluated whether these effects would compromise myocardial oxygenation during hemodilution. METHODS Eighteen anesthetized dogs were studied. Myocardial b...

متن کامل

Redistribution of red blood cell flow in microcirculatory networks by hemodilution.

The effect of isovolemic hemodilution on red blood cell flow distribution was studied in complete self-contained microvessel networks of the rat mesentery. Hematocrit, diameter, and length of all vessel segments as well as the topological structure were determined in control networks (systemic hematocrit, 0.54) and after hemodilution (systemic hematocrit, 0.30). Hemodilution was performed by ex...

متن کامل

Acute normovolemic hemodilution in the pig is associated with renal tissue edema, impaired renal microvascular oxygenation, and functional loss.

BACKGROUND The authors investigated the impact of acute normovolemic hemodilution (ANH) on intrarenal oxygenation and its functional short-term consequences in pigs. METHODS Renal microvascular oxygenation (µPO2) was measured in cortex, outer and inner medulla via three implanted optical fibers by oxygen-dependent quenching of phosphorescence. Besides systemic hemodynamics, renal function, hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 98 3  شماره 

صفحات  -

تاریخ انتشار 2005